Feasibility of raised inner strike point equilibria scenario in ITER for detritiation from beryllium co-deposits

Author:

Park Jae-SunORCID,Bonnin Xavier,Pitts RichardORCID,Gribov Y.,Wauters TomORCID,Kavin A.A.,Lukash V.E.,Khayrutdinov R.R.

Abstract

Abstract In ITER, tritium retention primarily occurs through co-deposition with beryllium. To avoid exceeding the strict tritium inventory limit, efficient tritium recovery techniques are essential. Baking is the ITER baseline for tritium recovery, but its effectiveness in removing tritium from thick beryllium layers is limited. A raised strike point scenario is considered an alternative method for removing tritium from the ITER inner vertical divertor target by heating components via plasma flux. This paper presents SOLPS-ITER code simulations conducted under various conditions, assessing the divertor performance and tritium outgassing of the raised strike point scenario. As the strike point is raised, recycled neutrals are not efficiently baffled by the dome and scrape-off layer, significantly changing the neutral trajectory and ionization source distribution. This improves detachment accessibility but worsens core-edge compatibility compared to the baseline scenario. However, in the partially detached condition, the impact of raising the strike point, perpendicular transport, and q 95 on target heat flux is not significant, as it primarily scales with the input power. Target heat flux is translated to target surface temperature using a simplified heat transfer model that considers the 3D target monoblock geometry and active cooling condition, excluding Be layer thermal properties. For partially detached divertor conditions, the bulk tungsten monoblock surface temperature remains below the baking temperature, which is insufficient for efficient tritium outgassing under the actively cooled ITER divertor condition. However, considering the potential thermal contact resistance between the beryllium and tungsten layers, which may significantly impact temperature distribution, the temperature of the beryllium layer can be raised to a level sufficient for efficient tritium outgassing. Therefore, the raised strike point scenario can be considered as an alternative in-vessel tritium removal technique.

Funder

U.S. Department of Energy

Ministry of Science and ICT, South Korea

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference40 articles.

1. ITER research plan within the staged approach (level III—provisional version),2018

2. Efficiency of thermal outgassing for tritium retention measurement and removal in ITER;De Temmerman;Nucl. Mater. Energy,2017

3. Wall conditioning in fusion devices with superconducting coils;Wauters;Plasma Phys. Control. Fusion,2020

4. Tritium inventory in ITER plasma-facing materials and tritium removal procedures;Roth;Plasma Phys. Control. Fusion,2008

5. First Monte–Carlo modelling of global beryllium migration in ITER using ERO2. 0;Romazanov;Contrib. Plasma Phys.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3