Parallel transport modeling of linear divertor simulators with fundamental ion cyclotron heating *

Author:

Kumar A.ORCID,Caneses-Marin J.F.ORCID,Lau C.ORCID,Goulding R.ORCID

Abstract

Abstract The Material Plasma Exposure eXperiment (MPEX) is a steady state linear device with the goal to perform plasma material interaction studies at future fusion reactor relevant conditions. A prototype of MPEX referred as ‘Proto-MPEX’ is designed to carry out research and development related to source, heating and transport concepts on the planned full MPEX device. The auxiliary heating schemes in MPEX are based on cyclotron resonance heating with radio frequency (RF) waves. Ion cyclotron heating (ICH) and electron cyclotron heating in MPEX are used to independently heat the ions and electrons and provide fusion divertor conditions ranging from sheath-limited to fully detached divertor regimes at a material target. A hybrid particle-in-cell code- PICOS++ is developed and applied to understand the plasma parallel transport during ICH in MPEX/Proto-MPEX to the target. With this tool, evolution of the distribution function of MPEX/Proto-MPEX ions is modeled in the presence of (a) Coulomb collisions, (b) volumetric particle sources and (c) quasi-linear RF-based ICH. The code is benchmarked against experimental data from Proto-MPEX and simulation data from B2.5 EIRENE. The experimental observation of ‘density-drop’ near the target in Proto-MPEX and MPEX during ICH is demonstrated and explained via physics-based arguments using PICOS++ modeling. In fact, the density drops at the target during ICH in Proto-MPEX/MPEX to conserve the flux and to compensate for the increased flow during ICH. Furthermore, sensitivity scans of various plasma parameters with respect to ICH power are performed for MPEX to investigate its role on plasma transport and particle and energy fluxes at the target.

Funder

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3