Dependence of blistering and deuterium retention on damage depth in damaged tungsten exposed to deuterium plasma

Author:

Wang ShiweiORCID,Guo WangguoORCID,Cheng LongORCID,Schwarz-Selinger Thomas,Liu Mi,Zhu Xiuli,Yuan YueORCID,Fu Engang,Lu Guang-Hong

Abstract

Abstract The effect of different damage depth on blistering and deuterium (D) retention has been investigated in heavy-ion-damaged tungsten (W) with exposure to D plasma (40 eV, 1 × 1022 ions m−2 s−1) at 550 K. Different damage depths are realized via copper (Cu) ion irradiation with energies of 1, 3, and 6 MeV on W samples with the same calculated peak damage level of 0.5 dpa. The plasma-induced blister density reduces with increasing damage depth, which is explained based on the recently proposed dislocation nucleation mechanism of blistering. Comparison of D retention measured by nuclear reaction analysis (NRA) and thermal desorption spectroscopy (TDS) reveals that retention at depths larger than 7.4 μm—which is far beyond the ion damage depth—increases with damage depth. Such a phenomenon indicates a gradual increase of diffusion flux inside the damaged sample with the increasing damage depth. It is suggested that it originates from the observed difference in blister density. Besides the widely acknowledged enhanced D retention due to ion damage, this work shows a strong impact of the damage depth on blistering such as the blister density, and by which the D diffusion flux inside W and total D retention are further affected.

Funder

The National Magnetic Confinement Fusion Energy Research Project

The National Natural Science Foundation of China

The National MCF Energy R&D Program

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3