Divertor heat load estimates on NSTX and DIII-D using new and open-source 2D inversion analysis code

Author:

Adebayo-Ige P.O.ORCID,Gan K.F.ORCID,Lasnier C.J.ORCID,Maingi R.ORCID,Wirth B.D.ORCID

Abstract

Abstract A thermography inversion algorithm has been developed in the open-source Python-based computer code, HYPERION, to calculate the heat flux incident on plasma-facing components (PFCs) in axisymmetric tokamaks. The chosen mesh size at the surface significantly affects the calculated transient heat flux results. The calculated transient heat flux will exceed the real value when the mesh size tends to zero but will underestimate the real value when the mesh size is large. A criterion for determining the appropriate mesh size for the transient heat flux calculation will be discussed. The numerical scheme for HYPERION uses a 2D fully implicit finite-difference approach, allowing temperature-dependent thermal properties of PFC materials. The inversion algorithm is benchmarked against established heat flux calculation codes, TACO and THEODOR, based on thermography data from NSTX and DIII-D respectively. The primary benefits of HYPERION compared to TACO and THEODOR are that it is open-source and it allows for the optimization of mesh thickness along the substrate. The algorithm also accounts for the thermal properties of thin surface layers that characteristically form on PFCs due to plasma-material interactions. The agreement between HYPERION and THEODOR is excellent, as the percent difference between the codes is ∼5% on average in the case of the DIII-D data for moderate to high heat flux. Verification tests with TACO show slightly higher average percent differences of 8% and 12%. In using HYPERION to study filaments in heat flux, the initial results indicate that small ELMs filaments significantly broaden the divertor heat flux, and decrease divertor peak flux. Compared to the inter-ELM, the small ELM filaments decrease the divertor peak surface temperature. With intermittent divertor filaments, the divertor heat flux width is comparable with that found in L-mode.

Funder

Fusion Energy Sciences

Publisher

IOP Publishing

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3