Transition from no-ELM response to pellet ELM triggering during pedestal build-up—insights from extended MHD simulations

Author:

Futatani S.ORCID,Cathey A.ORCID,Hoelzl M.ORCID,Lang P.T.ORCID,Huijsmans G.T.A.,Dunne M.,JOREK Team the,ASDEX Upgrade Team the,EUROfusion MST1 Team the

Abstract

Abstract Pellet edge localized mode (ELM) triggering is a well-established scheme for decreasing the time between two successive ELM crashes below its natural value. Reliable ELM pacing has been demonstrated experimentally in several devices, increasing the ELM frequency considerably. However, it was also shown that the frequency cannot be increased arbitrarily due to a so-called lag-time. During this time, after a preceding natural or triggered ELM crash, neither a natural ELM crash occurs nor is it possible to trigger an ELM crash by pellet injection. For this article, pellet ELM triggering simulations are advanced beyond previous studies in two ways. Firstly, realistic E × B and diamagnetic background flows are included. And secondly, the pellet is injected at different stages of the pedestal build-up. This allows us to recover the lag time for the first time in simulations and investigate it in detail. A series of nonlinear extended MHD simulations is performed to investigate the plasma dynamics resulting from an injection at different time points during the pedestal build-up. The experimentally observed lag-time is qualitatively reproduced. In particular, a sharp transition is observed between the regime where no ELMs can be triggered and the regime where pellet injection causes an ELM crash. Via variations of pellet parameters and injection time, the two regimes are studied and compared in detail, revealing pronounced differences in the nonlinear dynamics. The toroidal mode spectrum is significantly broader when an ELM crash is triggered, enhancing the stochasticity and therefore also the losses of thermal energy along magnetic field lines. In the heat fluxes to the divertor targets, pronounced toroidal asymmetries are observed. In the case of high injection velocities leading to deep penetration, the excitation of core modes like the 2/1 neoclassical tearing mode is also observed.

Funder

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3