Divertor impurity seeding with a new feedback control scheme for maintaining good core confinement in grassy-ELM H-mode regime with tungsten monoblock divertor in EAST

Author:

Xu G.S.ORCID,Yuan Q.P.,Li K.D.ORCID,Wang L.,Xu J.C.ORCID,Yang Q.Q.ORCID,Duan Y.M.,Meng L.Y.ORCID,Yang Z.S.,Ding F.,Liu J.B.,Guo H.Y.,Wang H.Q.,Eldon D.,Tao Y.Q.,Wu K.ORCID,Yan N.ORCID,Ding R.ORCID,Wang Y.F.ORCID,Ye Y.,Zhang L.,Zhang T.,Zang Q.,Li Y.Y.ORCID,Liu H.Q.,Jia G.Z.,Liu X.J.,Si H.,Li E.Z.ORCID,Zeng L.ORCID,Qian J.P.,Lin S.Y.,Xu L.Q.ORCID,Wang H.H.ORCID,Gong X.Z.,Wan B.N.

Abstract

Abstract Small perturbations and strong impurity exhaust capability associated with the small grassy ELMs render the grassy-ELM regime a suitable candidate for achieving steady-state H-mode operation with a radiative divertor, especially in a metal-wall device, such as the Experimental Advanced Superconducting Tokamak (EAST). As the degradation of pedestal performance with excessive divertor impurity seeding or accumulation tends to be accompanied with significantly increased radiation near the divertor X point, feedback control of the absolute extreme ultraviolet (AXUV) radiation near the X point has been employed to maintain the confinement property in EAST. However, the absolute value of the AXUV radiation at the outer target varies with plasma conditions as during the divertor detachment process. Thus, a new feedback-control scheme has been recently developed and applied to grassy-ELM H-mode plasmas in EAST to achieve stationary partial detachment while maintaining good global energy confinement with H 98,y2 >1. In this scheme, electron temperatures (T et) measured by divertor Langmuir probes are used to identify the onset of detachment, and then the plasma control system (PCS) switches to the feedback control of one channel of AXUV radiation near the X point, where a steep gradient in the radiation profile is present. The feedback is performed through pulse-width-modulated duty cycle of a piezo valve to seed impurities with mixed gas (50% Ne and 50% D2) from the outer target plate near the strike point in the upper tungsten monoblock divertor. T et near the strike point is maintained in the range of 5–8 eV, and peak surface temperature on the outer target plate (T IR,peak) is suppressed and maintained at ∼180 °C, based on infrared camera measurements. The plasma stored energy maintains nearly constant over the entire feedback-control period. It thus offers a highly promising plasma control scenario suitable for long-pulse high-performance H-mode operation in EAST, which is potentially applicable to future steady-state fusion reactors as an integrated solution for the control of both ELM-induced transient and steady-state divertor heat loads while maintaining good core confinement.

Funder

K C Wong Education Foundation

CASHIPS Director’s Fund

National Magnetic Confinement Fusion Energy R&D Program of China

Key Research Program of Frontier Sciences, CAS

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3