New heat flux model for non-axisymmetric divertor infrared structures

Author:

Wingen A.ORCID,Orlov D.ORCID,Evans T.E.ORCID,Bykov I.,Wilks T.M.

Abstract

Abstract A convective heat flux model for perturbed plasmas, based on guiding center ion drift in vacuum fields (Wingen, et al 2014 Phys. Plasmas 21 012509), has been updated. The old model only considered ion heat flux, while here also electron heat flux is included. The updated model predicts divertor heat flux distributions in non-axisymmetric (3D) plasmas with applied resonant magnetic perturbation fields, and includes electric scalar potentials. It is found that a radial electric field in the near scrape-off layer can considerably shift the footprints toroidally, leading to a smearing out effect of the incident heat flux, while a simple model for sheath potential has little impact on footprints. Various approaches to model electron heat flux are studied. A convective electron model, based on collisionless free streaming, is found to yield the best agreement with measurements, while a conductive model requires a flat temperature gradient inside lobes to yield acceptable peak heat flux values. A heuristic heat flux layer approach, based on a fixed layer width also requires a limited heat flux inside the last closed flux surface (LCFS); by selecting various locations of the LCFS, the results of the conductive or convective model can be recovered respectively. The sum of ion and electron heat fluxes, both obtained by the convective model, is compared to experimental data for multiple time slices in DIII-D. Strike point splitting is observed with peak heat fluxes and layer widths that compare well to infrared camera measurements.

Funder

Fusion Energy Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3