Parametric instabilities and hot electron generation in the interactions of broadband lasers with inhomogeneous plasmas

Author:

Liu Z.,Ma H.H.ORCID,Wang W.,Li X.F.ORCID,Wang P.P.,Wang C.ORCID,Yew S.H.ORCID,Weng S.M.,Sheng Z.M.ORCID,Zhang J.

Abstract

Abstract The development of parametric instabilities in the interaction of a large-scale inhomogeneous plasma with either a monochromatic or a broadband laser pulse is investigated theoretically and numerically. For a monochromatic laser at an intensity of 1.5 × 10 15  W cm−2, the development of Stimulated Brillouin Scattering (SBS) in the relatively low density region will obviously dissipate pump laser and hence inhibit the development of Two-Plasmon Decay (TPD) and absolute Stimulated Raman Scattering (SRS) near the quarter-critical density. By using a laser with a moderate fractional bandwidth (∼1.0%) at the same averged intensity, it is found that the laser reflectivity will be greatly reduced since the SBS can be suppressed effectively due to its low linear growth rate. On the contrary, the TPD and absolute SRS are obviously enhanced since the in situ laser intensity near the quarter-critical density becomes stronger in this case. As a result, the hot electron generation due to the TPD and absolute SRS is dramatically enhanced as well. This indicates that the competition between various parametric instabilities in a large-scale inhomogeneous plasma makes it more challenging to simultaneously suppress all kinds of parametric instabilities by using broadband lasers. Particular attention should be paid to the TPD, which not only has a relatively large linear growth rate but also is efficient in generating harmful hot electrons. Increasing the laser bandwidth further, the hot electron generation will be finally reduced as long as the TPD and SRS are also suppressed with a sufficient bandwidth ( 3%) at the intensity of 1.5 × 10 15  W cm−2 that may be encountered in some novel ignition schemes such as shock ignition. However, it is worth noting that the laser bandwidth required to mitigate parametric instabilities and hot electron production strongly depends on laser intensity. A moderate laser bandwidth (∼1%) may be sufficient to mitigate both the laser reflectivity and hot electron production for typical ICF target designs operated with laser intensities lower than 1015 W cm−2.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Science Challenge Project

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3