Transient analysis of high-Z impurity screening by additional injection of low-Z impurity using integrated divertor code SONIC

Author:

Yamoto ShoheiORCID,Hoshino KazuoORCID,Homma YukiORCID,Nakano Tomohide,Hayashi Nobuhiko

Abstract

Abstract The dynamics of the screening effect of Ar impurity by the injection of additional Ne has been studied through time-dependent analysis with the integrated divertor code SONIC. In the preceding study (Yamoto et al 2020 Plasma Phys. Control. Fusion 62 045006), the predictive simulation of JT-60SA plasma by SONIC has shown that the injection of additional Ne into Ar-seeded plasma results in lower Ar density and radiation power in the SOL and core edge than in the Ar-only seeded case. The results have demonstrated that the mixed impurity seeding of Ar and Ne may be advantageous for maintaining a high core plasma performance with a low divertor heat load. It was found that the friction force induced by the high D+ flow in the SOL towards the inner divertor (ID) region in the Ar + Ne seeded case pushes Ar impurities to the ID. However, the dynamics of D+ flow acceleration cannot be interpreted in the previous study because SONIC was a steady state code. In this study, we have developed the time-dependent version of SONIC and applied it to the transient analysis of the injection of additional Ne into Ar-seeded plasma in JT-60SA. When additional Ne is injected, Ne ions stay in the ID plasma near the X-point. As a result, the Ne radiation power increases near the X-point. The electron pressure then decreases due to the radiation cooling and the D+ flow is accelerated by the electron pressure gradient. The ion pressure also decreases due to the convection by the accelerated D+ flow by electron pressure gradient. The resulting ion pressure gradient further accelerates the D+ flow velocity towards the ID. The results suggest that both the high-performance core plasma and the low divertor heat load can be achieved by the Ar + Ne mixed impurity seeding.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3