Toward efficient runs of nonlinear gyrokinetic simulations assisted by a convolutional neural network model recognizing wavenumber-space images

Author:

Narita E.ORCID,Honda M.ORCID,Maeyama S.ORCID,Watanabe T.-H.ORCID

Abstract

Abstract A neural-network based innovative model recognizing the wavenumber space images has been developed to accurately forecast when the saturation of turbulent heat fluxes commences, i.e., the saturation time, in nonlinear gyrokinetic simulations. The wavenumber space images of the perturbed distribution function are focused on, which better represent the characteristics of turbulence. The model exploiting the state-of-the-art convolutional neural network model is capable of detecting minuscule differences between the images. Once the wavenumber space image is fed into the developed model, it can quickly and almost perfectly classify which phase of the turbulence evolution in nonlinear gyrokinetic simulations the image is in: the linearly and nonlinearly growing phases and the saturation phase. It can also predict the simulation time at which the image was processed with significantly high accuracy. The model enables us to forecast the saturation time of the gyrokinetic simulation in question by feeding an image at an early stage of the simulation and receiving the degree of progress toward the saturation. The ability of the model makes it possible to easily search out a desirable initial condition that rapidly conducts the simulation to a saturation phase. Such a pre-prediction model is important for running long time simulations on a large scale supercomputer like Fugaku in view of the efficient use of computational resources. In order to improve the predictive capability for the simulation that is going to be performed, several prediction models are trained by data with different major instabilities. The best predictor is selected to be in use based on the result of the pre-performed linear stability calculation with low computational cost.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for The Promotion of Science

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3