Progress of indirect drive inertial confinement fusion in the United States

Author:

Kline J.L.,Batha S.H.,Benedetti L.R.,Bennett D.,Bhandarkar S.,Hopkins L.F. BerzakORCID,Biener J.,Biener M.M.,Bionta R.,Bond E.,Bradley D.,Braun T.,Callahan D.A.,Caggiano J.,Cerjan C.,Cagadas B.,Clark D.,Castro C.,Dewald E.L.,Döppner T.,Divol L.,Dylla-Spears R.,Eckart M.,Edgell D.,Farrell M.,Field J.,Fittinghoff D.N.,Gatu Johnson M.,Grim G.,Haan S.,Haines B.M.,Hamza A.V.,Hartouni EP.,Hatarik R.,Henderson K.,Herrmann H.W.,Hinkel D.,Ho D.,Hohenberger M.,Hoover D.,Huang H.,Hoppe M.L.,Hurricane O.A.ORCID,Izumi N.,Johnson S.,Jones O.S.ORCID,Khan S.,Kozioziemski B.J.,Kong C.,Kroll J.,Kyrala G.A.,LePape S.,Ma T.,Mackinnon A.J.,MacPhee A.G.,MacLaren S.,Masse L.,McNaney J.,Meezan N.B.,Merrill J.F.,Milovich J.L.,Moody J.,Nikroo A.,Pak A.,Patel P.,Peterson L.,Piceno E.,Pickworth L.,Ralph J.E.,Rice N.,Robey H.F.,Ross J.S.,Rygg J.R.,Sacks M.R.,Salmonson J.,Sayre D.,Sater J.D.,Schneider M.,Schoff M.,Sepke S.,Seugling R.,Smalyuk V.,Spears B.,Stadermann M.,Stoeffl W.,Strozzi D.J.,Tipton R.,Thomas C.,Volegov P.L.,Walters C.,Wang M.,Wilde C.,Woerner E.,Yeamans C.,Yi S.A.,Yoxall B.,Zylstra A.B.,Kilkenny J.,Landen O.L.,Hsing W.,Edwards M.J.

Abstract

Abstract Indirect drive converts high power laser light into x-rays using small high-Z cavities called hohlraums. X-rays generated at the hohlraum walls drive a capsule filled with deuterium–tritium (DT) fuel to fusion conditions. Recent experiments have produced fusion yields exceeding 50 kJ where alpha heating provides ~3×  increase in yield over PdV work. Closing the gaps toward ignition is challenging, requiring optimization of the target/implosions and the laser to extract maximum energy. The US program has a three-pronged approach to maximize target performance, each closing some portion of the gap. The first item is optimizing the hohlraum to couple more energy to the capsule while maintaining symmetry control. Novel hohlraum designs are being pursued that enable a larger capsule to be driven symmetrically to both reduce 3D effects and increase energy coupled to the capsule. The second issue being addressed is capsule stability. Seeding of instabilities by the hardware used to mount the capsule and fill it with DT fuel remains a concern. Work reducing the impact of the DT fill tubes and novel capsule mounts is being pursed to reduce the effect of mix on the capsule implosions. There is also growing evidence native capsule seeds such as a micro-structure may be playing a role on limiting capsule performance and dedicated experiments are being developed to better understand the phenomenon. The last area of emphasis is the laser. As technology progresses and understanding of laser damage/mitigation advances, increasing the laser energy seems possible. This would increase the amount of energy available to couple to the capsule, and allow larger capsules, potentially increasing the hot spot pressure and confinement time. The combination of each of these focus areas has the potential to produce conditions to initiate thermo-nuclear ignition.

Funder

Office of Defense Programs

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3