Recrystallization-mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heating

Author:

Li Y.,Morgan T.W.ORCID,Vermeij T.,Vernimmen J.W.M.,Loewenhoff Th.ORCID,Hoefnagels J.P.M.ORCID,van Dommelen J.A.W.ORCID,Wirtz M.ORCID,De Temmerman G.ORCID,Verbeken K.,Geers M.G.D.

Abstract

Abstract Tungsten and tungsten-based alloys are the leading material choices for the divertor plasma facing components (PFCs) in future fusion reactors. Recrystallization may occur when they undergo high heat loads, drastically modifying the predesigned grain structures and the associated desired mechanical properties. However, the influence of recrystallization on the thermal fatigue behavior of tungsten PFCs still remains unclear. In this study, ITER-grade tungsten was simultaneously exposed to a high-flux hydrogen plasma (∼5 × 1024 m−2 s−1) and high-cycle (104–105) transient heat loads in the linear plasma device Magnum-PSI. By correlating the surface temperature distribution, obtained by analyzing temperature-, wavelength-, and surface-dependent emissivity, and the surface modifications of the plasma exposed specimens, the crack initiation heat flux factor threshold was found to be ∼2 MW m−2 s0.5 (equivalently, ∼0.07 MJ m−2 for a 1 ms pulse). Based on electron backscatter diffraction analyses of cross-sections near the crack initiation sites, faster recrystallization kinetics near the surface compared to literature was observed and the surface cracks preferentially initiated at high angle grains boundaries (HAGBs). Upon recrystallization, the yield strength decreases which entails increasing cyclic plastic strains. The HAGBs fraction is increased, which constrains the transfer of plastic strains at grain boundaries. The recrystallization decreases the dislocation density, which promotes heterogeneous deformation. All these mechanisms explain the reduced crack initiation threshold of recrystallized tungsten compared to its as-received counterpart. The results provide new insights into the structural failure mechanisms in tungsten PFCs exposed to extreme fusion plasmas.

Funder

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3