Abstract
Abstract
We have used the local-δf gyrokinetic code GS2 to perform studies of the effect of flux-surface shaping on two highly-shaped, low- and high-β JT-60SA-relevant equilibria, including a successful benchmark with the GKV code. We find that for a high-performance plasma, i.e. one with high plasma beta and steep pressure gradients, the turbulent outwards radial fluxes may be reduced by minimizing the elongation. We explain the results as a competition between the local magnetic shear and finite-Larmor-radius (FLR) stabilization. Electromagnetic studies indicate that kinetic ballooning modes are stabilized by increased shaping due to an increased sensitivity to FLR effects, relative to the ion-temperature-gradient instability. Nevertheless, at high enough β, increased elongation degrades the local magnetic shear stabilization that enables access to the region of ballooning second-stability.
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献