Lifetime measurement of a particular deep crack failure on a flat-type divertor mockup under cyclic high heat flux loading conditions

Author:

Huang ShenghongORCID,Pan ZhiweiORCID,Jiang Menglai,Zhao Kai,Su Yong

Abstract

Abstract Plasma facing components are key to enduring high heat flux (HHF) loading from high-temperature plasma in nuclear fusion reactors. Understanding their thermal-mechanical behavior and cracking failure mechanisms related to structural designs and fabrication technologies during HHF loading is of great significance for improving their servicing performance and R&D (research and development) levels. In this study, a particular deep cracking failure process on the tungsten layer of a flat-type divertor mockup during 1800 cycles of 10 MW m−2 HHF loadings is completely monitored and measured with a special improved digital image correlation (DIC) technique. It is found that the DIC measurement under the HHF loading environment is improved successfully to capture fine deformation and strain fields with a spatial resolution less than 0.35 mm so that field strain on a 1 mm thick copper interlayer and deep crack initiation at several microns scale on the tungsten layer are measured out. Based on both full field and local strain and displacement measurements of the target divertor mockup, the thermal mechanical behaviors from deformation to crack initiation and propagation are successfully measured and traced. It is revealed that for the baseline copper interlayer design of a flat-type divertor mockup, the accumulation of plastic strain in the copper interlayer during ratcheting damage induces enough tensile stress on the tungsten layer during HHF cycles, leading to cracking and fracture failures even in its elastic state earlier than the copper LCF lifetime. Current Structural Design Criteria for ITER In-Vessel Components rules fail to cover this kind of ratcheting cracking failure mode in the design stage. New design models or mechanical validation rules to resolve this design blind spot should be established in the future.

Funder

National Magnetic Confinement Fusion Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3