Magnetic shear effect on plasma transport at T e/T i ∼ 1 through electron cyclotron heating in DIII-D plasmas

Author:

Yoshida M.,McKee G.R.,Petty C.C.ORCID,Grierson B.A.ORCID,Nakata M.ORCID,Rost C.,Rhodes T.L.,Ernst D.R.,Garofalo A.M.ORCID

Abstract

Abstract The effect of magnetic shear on plasma transport for an electron to ion temperature ratio (T e/T i) near unity has been explored in DIII-D utilizing electron cyclotron heating (ECH). Previous reports showed that significant confinement degradation occurred at T e/T i ∼ 1 in positive shear (PS) plasmas in DIII-D, whereas reduced confinement degradation was observed in negative central shear (NCS) plasmas. In this study, plasma transport in weak magnetic shear (WS) plasmas with ECH is investigated and compared with that in NCS and PS plasmas. Here the magnetic shears ( s ˆ ) are s ˆ > 0.5, ∼0 and <-0.1 in the core region (ρ∼ 0.3–0.4) of PS, WS and NCS plasmas, respectively, and flat or negative inside ρ∼ 0.4 in the WS and NCS plasmas. Weak magnetic shear is found to be effective in minimizing degradation of ion thermal confinement as T e/T i increases through ECH application, and an improved confinement factor of H 98y2 ∼ 1.2 is maintained, similar to NCS plasmas. At T e/T i ∼ 1, the ion thermal diffusivity around an internal transport barrier decreases when changing the magnetic shear from positive to weak or negative shear. Also, reduced local particle and momentum transport was indicated by steeper density and toroidal rotation profiles in the weak and negative shear regimes. Linear gyrokinetic simulations predict little change in growth rates of low-k turbulence with ECH application in the WS and NCS plasmas, which is consistent with the transport and profile analyses.

Funder

Grants-in-Aid for Scientific Research

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3