ITER materials irradiation within the D–T neutron environment at JET: post-irradiation radioactivity analysis following the DTE2 experimental campaign

Author:

Packer L.W.ORCID,Batistoni P.,Bearcroft C.,Bradnam S.C.,Eardley E.,Fabbri M.ORCID,Fonnesu N.ORCID,Gilbert M.R.ORCID,Ghani Z.,Gorzkiewicz K.,Grove C.L.,Kierepko R.,Łaszyńska E.,Lengar I.,Litaudon X.ORCID,Loreti S.,Mietelski J.W.,Pillon M.ORCID,Savva M.I.ORCID,Shand C.R.ORCID,Stamatelatos I.E.,Turner A.N.,Vasilopoulou T.,Villari R.,Wójcik-Gargula A.,Žohar A.,

Abstract

Abstract This work presents the results following the first irradiation of ITER materials samples in a tokamak D–T plasma environment operating at significant fusion power. The materials exposed to this nuclear environment at the Joint European Torus during the DTE2 experimental campaign that took place in 2021 include representative ITER samples from various components such as poloidal field coil jacket samples, toroidal field coil radial closure plate steels, EUROFER 97 steel, W and CuCrZr materials from the divertor, Inconel-718 and 316L stainless steel for blanket modules, as well as vacuum vessel forging samples. The experimental results discussed include high-resolution gamma spectrometry measurements and analysis conducted with the post-irradiated samples, of which there were 68 in total. These samples were exposed through different experimental campaigns, including deuterium, deuterium–tritium and tritium phases. Diagnostics that supported the analysis included 25 dosimetry foil-based neutron diagnostics and two ‘VERDI’ neutron spectrometry diagnostics. A further 12 samples for positron annihilation spectroscopy were also irradiated. The irradiation of all these samples took place in a long-term irradiation assembly located near the JET vacuum vessel. The post-irradiation analysis of the ITER material samples has yielded valuable insights into their material activation levels and radiation fields. Comparative assessments between experimental measurements and comprehensive neutronics simulations have demonstrated a significant level of agreement in this work, while also revealing some discrepancies in specific material instances. The data and interpretation from this work not only serve as a robust experimental foundation for enhancing the precision and predictability of neutronics simulation approaches for ITER and next-step devices but also present some opportunities for the refinement of simulation methodologies. In light of these findings, a series of recommendations have been proposed, aimed at improving confidence in nuclear predictions associated with materials that have been exposed to fusion nuclear environments and advancing understanding in this important domain.

Funder

Research Councils UK

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3