IDP-PGFE: an interpretable disruption predictor based on physics-guided feature extraction

Author:

Shen C.ORCID,Zheng W.ORCID,Ding Y.,Ai X.,Xue F.,Zhong Y.,Wang N.ORCID,Gao L.,Chen Z.ORCID,Yang Z.ORCID,Chen Z.ORCID,Pan Y.

Abstract

Abstract Disruption prediction has made rapid progress in recent years, especially in machine learning (ML)-based methods. If a disruption prediction model can be interpreted, it can tell why certain samples are classified as disruption precursors. This allows us to tell the types of incoming disruption for disruption avoidance and gives us insight into the mechanism of disruption. This paper presents a disruption predictor called interpretable disruption predictor based on physics-guided feature extraction (IDP-PGFE) and its results on J-TEXT experiment data. The prediction performance of IDP-PGFE with physics-guided features is effectively improved (true positive rate = 97.27%, false positive rate = 5.45%, area under the ROC curve = 0.98) compared to the models with raw signal input. The validity of the interpretation results is ensured by the high performance of the model. The interpretability study using an attribution technique provides an understanding of J-TEXT disruption and conforms to our prior comprehension of disruption. Furthermore, IDP-PGFE gives a possible mean on inferring the underlying cause of the disruption and how interventions affect the disruption process in J-TEXT. The interpretation results and the experimental phenomenon have a high degree of conformity. The interpretation results also gives a possible experimental analysis direction that the resonant magnetic perturbations delays the density limit disruption by affecting both the MHD instabilities and the radiation profile. PGFE could also reduce the data requirement of IDP-PGFE to 10% of the training data required to train a model on raw signals. This made it possible to be transferred to the next-generation tokamaks, which cannot provide large amounts of data. Therefore, IDP-PGFE is an effective approach to exploring disruption mechanisms and transferring disruption prediction models to future tokamaks.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference62 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3