Power exhaust concepts and divertor designs for Japanese and European DEMO fusion reactors

Author:

Asakura N.ORCID,Hoshino K.ORCID,Kakudate S.,Subba F.,Vorpahl C.,Homma Y.ORCID,Utoh H.,Someya Y.,Sakamoto Y.,Hiwatari R.ORCID,Suzuki S.,You J.-H.,Siccinio M.,Federici G.

Abstract

Abstract Concepts of the power exhaust and divertor design have been developed, with a high priority in the pre-conceptual design phase of the Japan–Europe broader approach DEMO design activity (BA DDA). Common critical issues are the large power exhaust and its fraction in the main plasma and divertor by the radiative cooling (P rad tot/P heat ⩾ 0.8). Different exhaust concepts in the main plasma and divertor have been developed for Japanese (JA) and European (EU) DEMOs. JA proposed a conventional closed divertor geometry to challenge large P sep/R p handling of 30–35 MW m−1 in order to maintain the radiation fraction in the main plasma at the ITER-level (f rad main = P rad main/P heat ∼ 0.4) and higher plasma performance. EU challenged both increasing f rad main to ∼0.65 and handling the ITER-level P sep/R p in the open divertor geometry. Power exhaust simulations have been performed by SONIC (JA) and SOLPS5.1 (EU) with corresponding P sep = 250–300 MW and 150–200 MW, respectively. Both results showed that large divertor radiation fraction (P rad div/P sep ⩾ 0.8) was required to reduce both peak q target (⩽10 MW m−2) and T e,i div. In addition, the JA divertor performance with EU-reference P sep of 150 MW showed benefit of the closed geometry to reduce the peak q target and T e,i div near the separatrix, and to produce the partial detachment. Integrated designs of the water cooled divertor target, cassette and coolant pipe routing have been developed in both EU and JA, based on the tungsten (W) monoblock concept with Cu-alloy pipe. For year-long operation, DEMO-specific risks such as radiation embrittlement of Cu-interlayers and Cu-alloy cooling pipe were recognized, and both foresee higher water temperature (130 °C–200 °C) compared to that for ITER. At the same time, several improved technologies of high heat flux components have been developed in EU, and different heat sink design, i.e. Cu-alloy cooling pipes for targets and RAFM steel ones for the baffle, dome and cassette, was proposed in JA. The two approaches provide important case-studies of the DEMO divertor, and will significantly contribute to both DEMO designs.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3