The role of an in-plane electric field during the merging formation of spherical tokamak plasmas

Author:

Inomoto M.ORCID,Suzuki T.,Jin H.,Maeda Y.,Togo Y.,Cho S.,Tanabe H.ORCID,Ono Y.ORCID,Kawamori E.,Usami S.ORCID,Yanai R.

Abstract

Abstract Axial merging of two torus plasmas is utilized as a center-solenoid free start-up scheme for a high-beta spherical tokamak (ST) plasma, in which magnetic reconnection under a strong guide field plays dominant roles in energy conversion and equilibrium formation. The ion heating source in magnetic reconnection is the plasma outflow with E × B drift velocity in the downstream region where the reconnected field lines flow out. Since the inductive reconnection electric field is almost parallel to the magnetic field, particularly in the inboard-side downstream region of magnetic reconnection under a strong guide field, a large electrostatic field in the poloidal plane is spontaneously formed to sustain steady plasma outflow motion in the downstream region. In ST plasma merging experiments, the self-generated electrostatic field in the downstream region does not always balance with the inductive electric field to make the total electric field strictly perpendicular to the total magnetic field. The excess electrostatic field will provide an even faster outflow plasma velocity than the magnetic field line motion and a quick reversal of the toroidal plasma current to form convex flux surfaces.

Funder

Japan Society for the Promotion of Science

National Institute for Fusion Science

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3