Machine learning-enhanced model-based scenario optimization for DIII-D

Author:

Morosohk S.ORCID,Leard B.ORCID,Rafiq T.ORCID,Schuster E.

Abstract

Abstract Scenario development in tokamaks is an open area of investigation that can be approached in a variety of different ways. Experimental trial and error has been the traditional method, but this required a massive amount of experimental time and resources. As high fidelity predictive models have become available, offline development and testing of proposed scenarios has become an option to reduce the required experimental resources. The use of predictive models also offers the possibility of using a numerical optimization process to find the controllable inputs that most closely achieve the desired plasma state. However, this type of optimization can require as many as hundreds or thousands of predictive simulation cases to converge to a solution; many of the commonly used high fidelity models have high computational burdens, so it is only reasonable to run a handful of predictive simulations. In order to make use of numerical optimization approaches, a compromise needs to be found between model fidelity and computational burden. This compromise can be achieved using neural networks surrogates of high fidelity models that retain nearly the same level of accuracy as the models they are trained to replicate while reducing the computation time by orders of magnitude. In this work, a model-based numerical optimization tool for scenario development is described. The predictive model used by the optimizer includes neural network surrogate models integrated into the fast Control-Oriented Transport simulation framework. This optimization scheme is able to converge to the optimal values of the controllable inputs that produce the target plasma scenario by running thousands of predictive simulations in under an hour without sacrificing too much prediction accuracy.

Funder

Fusion Energy Sciences

National Science Foundation Graduate Research Fellowship Program

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3