Drift kinetic theory of the NTM magnetic islands in a finite beta general geometry tokamak plasma

Author:

Dudkovskaia A.V.ORCID,Bardoczi L.ORCID,Connor J.W.ORCID,Dickinson D.ORCID,Hill P.ORCID,Imada K.ORCID,Leigh S.ORCID,Richner N.ORCID,Shi T.ORCID,Wilson H.R.ORCID

Abstract

Abstract In (Imada et al 2019 Nucl. Fusion 59 046016 and references therein) a new 4D drift kinetic nonlinear theory, valid in the limit of a low beta, small inverse aspect ratio, circular cross section, toroidal geometry, to describe the plasma response to the neoclassical tearing mode (NTM) magnetic perturbation is derived. In (Dudkovskaia et al 2021 Plasma Phys. Control. Fusion 63 054001) this theory is reduced in a low collisionality limit, which allows a dimensionality reduction to a 3D problem to efficiently resolve the collisional dissipation layer in the vicinity of the trapped-passing boundary. (Dudkovskaia et al 2021 Plasma Phys. Control. Fusion 63 054001) adopts an improved model for the magnetic drift frequency, which reduces the threshold magnetic island half-width from 8.73 ρ b i , where ρ b i is the trapped ion banana orbit width, to 1.46 ρ b i , making it in closer agreement with experimental observations for the large aspect ratio tokamak equilibrium. In the present paper, the theory is extended to a high beta, arbitrary tokamak geometry to capture the plasma shaping effects on the NTM threshold physics with the focus on the non-zero triangularity discharges that are known to have a strong impact on the plasma MHD stability. First, it is found that the higher triangularity plasma is more prone to NTMs which is in agreement with the 2 / 1 tearing mode onset relative frequency measurements in DIII-D. Second, the NTM threshold dependence on the tokamak inverse aspect ratio obtained in (Dudkovskaia et al 2021 Plasma Phys. Control. Fusion 63 054001) is refined and extended to a finite aspect ratio limit. Third, the NTM threshold dependence on poloidal beta is obtained and benchmarked against the EAST threshold island width measurements.

Funder

EUROfusion

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3