Abstract
Abstract
Numerical simulations explore a possible tightly baffled, long-legged divertor (TBLLD) concept in a future upgrade of the tokamak à configuration variable (TCV). The SOLPS-ITER code package is used to compare the exhaust performance of several TBLLD configurations with results from unbaffled and baffled TCV configurations. The investigated TBLLDs feature a range of radial gaps between the separatrix and the divertor baffles, with a smaller gap resulting in tighter baffling. All modeled TBLLDs are predicted to lead to a denser and colder plasma in front of the targets and increase the power handling by factors of 2–3 compared to the present, baffled, divertor and by up to a factor of 12 compared to the original, unbaffled, configuration. This improved TBLLD performance is attributed to an increased neutral confinement with more plasma–neutral interactions in the divertor region. Both power handling capability and neutral confinement increase with tighter baffling. The core compatibility of TBLLDs with nitrogen seeding is also evaluated and the detachment window, with acceptable core pollution, for these TBLLDs is explored, showing a reduction of the required upstream impurity concentration to achieve detachment by up to 18% with tighter baffling.
Funder
Swiss State Secretariat for Education, Research and Innovation
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Euratom Research and Training Programme
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献