High gas throughput SOLPS-ITER simulations extending the ITER database to strong detachment

Author:

Lore J.D.ORCID,Bonnin X.,Park J.-S.ORCID,Pitts R.A.ORCID,Stangeby P.C.

Abstract

Abstract SOLPS-ITER simulations performed for Q DT = 10, P SOL = 100 MW burning plasmas on ITER extend the existing database to high values of separatrix averaged neon impurity concentration (⟨c Ne⟩ ≈ 6%) and divertor neutral pressure (⟨p div⟩ > 25 Pa) in order to determine the heat flux mitigation capability of these scenarios and whether strongly detached states are accessible. In the existing database of ITER simulations, the level of detachment was limited to cases where the integral ion flux to the outer target was greater than 80% of the value at rollover, with the impurity radiation localized near the target. With the possibility of narrow heat flux channels and increased deposited power due to tile shaping, it is important to explore operation at a higher degree of detachment. Two series of simulations were explored to extend the database of SOLPS simulations. By increasing the deuterium and neon puff rates proportionally, the peak divertor energy flux (q ⊥,max) is decreased from 5 to 3 MW m−2 while ⟨p div⟩ increased from 11 to 27 Pa. By increasing only the neon puff, q ⊥, max can be reduced to <1MW m−2 while ⟨p div⟩ is maintained at 11 Pa. As the neon puff level is increased, the position of the impurity radiation peak is shifted towards the X-point. At the highest neon puff levels with steady-state solutions, the electron temperature is reduced below 1 eV across 50 cm of each divertor target. The new cases extend previously observed tight relationships in power and momentum loss factors to low electron temperature improving their utility for highly detached regimes.

Funder

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3