Automated experimental design of safe rampdowns via probabilistic machine learning

Author:

Mehta VirajORCID,Barr JaysonORCID,Abbate JosephORCID,Boyer Mark DORCID,Char Ian,Neiswanger WillieORCID,Kolemen Egemen,Schneider Jeff

Abstract

Abstract Typically the rampdown phase of a shot consists of a decrease in current and injected power and optionally a change in shape, but there is considerable flexibility in the rate, sequencing, and duration of these changes. On the next generation of tokamaks it is essential that this is done safely as the device could be damaged by the stored thermal and electromagnetic energy present in the plasma. This works presents a procedure for automatically choosing experimental rampdown designs to rapidly converge to an effective rampdown trajectory. This procedure uses probabilistic machine learning methods paired with acquisition functions taken from Bayesian optimization. In a set of 2022 experiments at DIII-D, the rampdown designs produced by our method maintained plasma control down to substantially lower current and energy levels than are typically observed. The actions predicted by the model significantly improved as the model was able to explore over the course of the experimental campaign.

Funder

Fusion Energy Sciences

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Internet Financial Risk Early Warning Based on BP Neural Network;Proceedings of the 2023 4th International Conference on Big Data Economy and Information Management;2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3