Abstract
Abstract
A novel hybrid Model Predictive Control (MPC) algorithm has been designed for simultaneous safety factor (q) profile and stored energy (w) control while incorporating the pulse-width-modulation constraints associated with the neutral beam injection (NBI) system. Regulation of the q-profile has been extensively shown to be a key factor for improved confinement as well as non-inductive sustainment of the plasma current. Simultaneous control of w is necessary to prevent the triggering of pressure-driven magnetohydrodynamic instabilities as the controller shapes the q profile. Conventional MPC schemes proposed for q-profile control have considered the NBI powers as continuous-time signals, ignoring the discrete-time nature of these actuators and leading in some cases to performance loss. The hybrid MPC scheme in this work has the capability of incorporating the discrete-time actuator dynamics as additional constraints. In nonlinear simulations, the proposed hybrid MPC scheme demonstrates improved q-profile+w control performance for NSTX-U operating scenarios.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献