Abstract
Abstract
Halo current (HC) rotation during disruptions can be potentially dangerous if resonant with the structures surrounding a tokamak plasma. We propose a drift-frequency-based scaling law for the rotation frequency of the asymmetric component of the HC as a function of toroidal field strength and plasma minor radius (f
rot ∝ 1/B
T
a
2). This scaling law is consistent with results reported for many tokamaks and is motivated by the faster HC rotation observed in the HBT-EP tokamak. Projection of the rotation frequency to ITER and SPARC parameters suggest the asymmetric HC rotation will be on the order of 10 Hz and 60 Hz, respectively.
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献