Hot spots induced by RF-accelerated electrons in the scrape-off layer on Experimental Advanced Superconducting Tokamak

Author:

Wang Y.ORCID,Hanada K.,Liu H.ORCID,Gao X.ORCID,Jie Y.,Li Y.ORCID,Li M.ORCID,Wu C.,Hu Y.ORCID,He K.,Zhang B.ORCID,Zhang L.,Zang Q.,Zhang T.ORCID,Zhou T.,Yu L.,Liang R.,Chu Y.ORCID,Xie J.

Abstract

Abstract Preventing impurity emission from hot spots on plasma-facing materials is a critical issue in the maintenance of high-performance plasma on the Experimental Advanced Superconducting Tokamak (EAST). In this study, experimental and theoretical analyses were performed to investigate the mechanism of hot spot formation. In the upper single null magnetic configuration of the EAST, two separatrices were connected to the upper (primary) and lower (secondary) X-points. Experiments on plasma configuration control indicated that the reduction in the gap between the lower (secondary) separatrix and lower hybrid antenna is effective in preventing hot spot formation on the lower divertor, which frequently emits impurities in long-duration discharges. This effectiveness was quantitatively confirmed by magnetic field lines tracking simulation and calorimetric measurement of divertors in the experiment. Two-frequency power modulation of the lower hybrid wave (LHW) was conducted to evaluate power deposition on the scrape-off layer (SOL) during propagation from the LHW antenna to the main plasma. This experiment clarified that LHW-accelerated electrons in the SOL via collision damping deliver their energies to hot spots along the magnetic field line. These findings help alleviate or even eliminate the formation of hot spots and maintain the performance of plasma.

Funder

Major Special Science and Technology Project of Anhui Province

Key Program of Research and Development of Hefei Science Center

Grant-in-Aid for JSPS Fellows

JST SPRING

National MCF Energy R&D Program

Collaborative Research Program of the Research Institute for Applied Mechanics, Kyushu University

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3