Comparing particle transport in JET and DIII-D plasmas: gyrokinetic and gyrofluid modelling

Author:

Fransson E.ORCID,Eriksson F.ORCID,Oberparleiter M.ORCID,Held M.ORCID,Mordijck S.,Nordman H.,Salmi A.,Strand P.,Tala T.

Abstract

Abstract Transport modelling, for two dimensionless collisionality scaling experiments at the Joint European Torus (JET) and DIII-D with three discharges each, is presented. Experimental data from JET (Tala et al 2019 Nucl. Fusion 59 126030) and DIII-D (Mordijck et al 2020 Nucl. Fusion 60 066019) show a dissimilar dependence in the density peaking from the source and turbulent transport. The discharges from the JET collisionality scan show that the source is dominant for the density peaking, which is contrary to DIII-D where the transport is the main cause for the peaking. In this article, the different dependency on the source is studied by investigating the zero flux density gradient (peaking factor) at radial position ρ t  = 0.6 and by calculating the averaged perturbed diffusion and pinch between ρ t  = 0.5 and ρ t  = 0.8. Results show that the difference of the normalized temperature gradients have the largest and considerable impact on the peaking factor. The calculated diffusion and pinch showed good match with the experimental measured perturbed values. The calculated ratio of the particle balance pinch and diffusion explained the difference in peaking from turbulent transport, a high ratio for DIII-D yielding high peaking and a low ratio for JET yielding low peaking. However the particle balance diffusion, which suppresses the peaking from the source, was high for DIII-D and low for JET. Thusly, explaining the particle source much larger impact on the peaking at JET.

Funder

Fusion Energy Sciences

FP7 Fusion Energy Research

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3