Abstract
Abstract
A technique to identify intrinsic error fields (EFs) in tokamaks with minimized risk of disruption is demonstrated on the DIII-D tokamak. The method extends the conventional driven magnetic island ‘compass scan’ approach by modifying asynchronous control waveforms to enable prompt healing of the island instability. Healing of the island is achieved by reducing the imposed non-axisymmetric coil current and raising the density (here via gas fueling). The method is also shown to support multiple island threshold measurements per pulse, thus reducing the number of dedicated pulses necessary to conduct an EF identification. Non-linear modeling with the TM1 code reproduces the experimental results and approximately recovers the critical density required for island healing. Island healing is explained in the non-linear modeling by an increase in the viscous coupling between the static island and the nearby flowing plasma, thus healing the island as it accelerates into the plasma frame. Due to both simplicity and risk minimization, this technique is suitable for plasma-based EF identification in the early commissioning stages of future disruption-averse tokamaks such as ITER and SPARC.
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献