Explaining the lack of power degradation of energy confinement in wide pedestal quiescent H-modes via transport modeling

Author:

Houshmandyar SaeidORCID,Burrell K.H.ORCID,Grierson B.A.ORCID,McClenaghan J.ORCID,Staebler G.M.ORCID,Chrystal C.ORCID,Halfmoon M.R.ORCID,Hatch D.R.ORCID,Zeng L.,Austin M.E.ORCID

Abstract

Abstract Wide pedestal quiescent H (WPQH)-mode is an attractive scenario for future burning plasmas as they operate without ELMs. WPQH is characterized by formation of a wider and higher pedestal (than quiescent H-mode), and broadband fluctuations in the pedestal. Unlike conventional H-modes, where the energy confinement time reduces with increasing heating power, the WPQH plasmas reported in this paper do not show power degradation of the energy confinement. As the injected neutral beam power was increased, reduced core (ρ ⩽ 0.45) transport calculated by transp, as well as increased core temperatures, pressure gradient and diamagnetic E × B shear rate were observed. The reduction in the heat transport and rapid decrease in the ion temperature gradient scale length suggest the formation of an ion internal transport barrier (ITB) that was accompanied by increased stored energy in the core. Quasilinear turbulent transport modeling using the trapped gyro Landau fluid (tglf) code was used to predict the ITB and its turbulence stability properties. By using profiles and equilibria produced by matching the transp transport fluxes with the tglf transport model within the tgyro transport solver, the energy confinement time captures the experimentally observed insensitivity to the increased P NBI. Linear stability analysis reveals that drift-wave instabilities in the core are stabilized by E × B shear, T i/T e ratio and Shafranov shift; the latter was found to have the strongest effect on the turbulence suppression at the highest heating level.

Funder

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3