Characterization of novel 3D printed plastic scintillation dosimeters

Author:

Lynch NicholasORCID,Monajemi Thalat,Robar James L

Abstract

Abstract We propose a new methodology for the fabrication and evaluation of scintillating detector elements using a consumer grade fusion deposition modeling (FDM) 3D printer. In this study we performed a comprehensive investigation into both the effects of the 3D printing process on the scintillation light output of 3D printed plastic scintillation dosimeters (PSDs) and their associated dosimetric properties. Fabrication properties including print variability, layer thickness, anisotropy and extrusion temperature were assessed for 1 cm3 printed samples. We then examined the stability, dose linearity, dose rate proportionality, energy dependence and reproducibility of the 3D printed PSDs compared to benchmarks set by commercially available products. Experimental results indicate that the shape of the emission spectrum of the 3D printed PSDs do not show significant spectral differences when compared to the emission spectrum of the commercial sample. However, the magnitude of scintillation light output was found to be strongly dependent on the parameters of the fabrication process. Dosimetric testing indicates that the 3D printed PSDs share many desirable properties with current commercially available PSDs such as dose linearity, dose rate independence, energy independence in the MV range, repeatability, and stability. These results demonstrate that not only does 3D printing offer a new avenue for the production and manufacturing of PSDs but also allows for further investigation into the application of 3D printing in dosimetry. Such investigations could include options for 3D printed, patient-specific scintillating dosimeters that may be used as standalone dosimeters or incorporated into existing 3D printed patient devices (e.g. bolus or immobilization) used during the delivery of radiation therapy.

Funder

Atlantic Canada Opportunities Agency

Publisher

IOP Publishing

Subject

General Nursing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3