CPU-GPU coupling independent reaction times method in NASIC and application in water radiolysis by FLASH irradiation

Author:

Hu AnkangORCID,Qiu RuiORCID,Wu Zhen,Zhang Hui,Li Junli

Abstract

Abstract The mechanism of the FLASH effect remains unclear and could be revealed by studying chemical reactions during irradiation. Monte Carlo simulation of the radiolytic species is an effective tool to analyze chemical reactions, but the simulation is limited by computing costs of the step-by-step simulation of radiolytic species, especially when considering beam with complex time structure. The complexity of the time structure of beams from accelerators in FLASH radiotherapy requires a high-performance Monte Carlo code. In this work, we develop a CPU-GPU coupling accelerating code with the independent reaction times (IRT) method to extend the chemical module of our nanodosimetry Monte Carlo code NASIC. Every chemical molecule in the microenvironment contains time information to consider the reactions from different tracks and simulate beams with complex time structures. Performance test shows that our code significantly improved the computing efficiency of the chemical module by four orders of magnitude. Then the code is used to study the oxygen depletion hypothesis in FLASH radiotherapy for different conditions by setting different parameters. The transient oxygen consumption rate values in the water are calculated when the pulses width ranges from 2 ps to 2 μs, the total dose ranges from 0.5 Gy to 100 Gy and the initial oxygen concentration ranges from 0.1% to 21%. The time evolution curves are simulated to study the effect of the time structure of an electron linear accelerator. Results show that the total dose in several microseconds is a better indicator reflecting the radiolytic oxygen consumption rate than the dose rate. The initial oxygen greatly affects the oxygen consumption rate because of the reaction competition. The diffusion of oxygen determined by the physiological parameters is the key factor affecting oxygen depletion during the radiation using electron linear accelerators. Our code provides an efficient tool for simulating water radiolysis in different conditions.

Funder

Tsinghua University Initiative Scientific Research Program

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Nursing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Possible mechanisms and simulation modeling of FLASH radiotherapy;Radiological Physics and Technology;2024-01-06

2. TRAX-CHEMxt: Towards the Homogeneous Chemical Stage of Radiation Damage;International Journal of Molecular Sciences;2023-05-28

3. Radical Production with Pulsed Beams: Understanding the Transition to FLASH;International Journal of Molecular Sciences;2022-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3