Impact of anesthesia on micromagnetic stimulation (μMS) of the vagus nerve

Author:

Saha RenataORCID,Van Helden Dusty,Hopper Matthew SORCID,Low Walter CORCID,Netoff Theoden IORCID,Osborn JohnORCID,Wang Jian-PingORCID

Abstract

Abstract To treat diseases associated with vagal nerve control of peripheral organs, it is necessary to selectively activate efferent and afferent fibers in the vagus. As a result of the nerve’s complex anatomy, fiber-specific activation proves challenging. Spatially selective neuromodulation using micromagnetic stimulation(μMS) is showing incredible promise. This neuromodulation technique uses microcoils(μcoils) to generate magnetic fields by powering them with a time-varying current. Following the principles of Faraday’s law of induction, a highly directional electric field is induced in the nerve from the magnetic field. In this study on rodent cervical vagus, a solenoidal μcoil was oriented at an angle to left and right branches of the nerve. The aim of this study was to measure changes in the mean arterial pressure (MAP) and heart rate (HR) following μMS of the vagus. The μcoils were powered by a single-cycle sinusoidal current varying in pulse widths(PW = 100, 500, and 1000 μsec) at a frequency of 20 Hz. Under the influence of isoflurane, μMS of the left vagus at 1000 μsec PW led to an average drop in MAP of 16.75 mmHg(n = 7). In contrast, μMS of the right vagus under isoflurane resulted in an average drop of 11.93 mmHg in the MAP(n = 7). Surprisingly, there were no changes in HR to either right or left vagal μMS suggesting the drop in MAP associated with vagus μMS was the result of stimulation of afferent, but not efferent fibers. In urethane anesthetized rats, no changes in either MAP or HR were observed upon μMS of the right or left vagus(n = 3). These findings suggest the choice of anesthesia plays a key role in determining the efficacy of μMS on the vagal nerve. Absence of HR modulation upon μMS could offer alternative treatment options using VNS with fewer heart-related side-effects.

Funder

College of Science and Engineering

Minnesota Nano Center

Robert Hartmann Endowed chair support

National Nano Coordinated Infrastructure Network

National Science Foundation

MnDRIVE (Minnesota’s Discovery, Research and Innovation Economy) initiative

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Micromagnetic Neural Stimulation and Spintronic Neural Sensing;2024 IEEE International Magnetic Conference - Short papers (INTERMAG Short papers);2024-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3