Multi-modality bedding platform for combined imaging and irradiation of mice

Author:

Müller JohannesORCID,Schürer Michael,Neubert Christian,Tillner Falk,Beyreuther ElkeORCID,Suckert TheresaORCID,Peters Nils,von Neubeck Cläre,Lühr ArminORCID,Krause Mechthild,Bütof Rebecca,Dietrich Antje

Abstract

Abstract Preclinical imaging and irradiation yields valuable insights into clinically relevant research topics. While complementary imaging methods such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) can be combined within single devices, this is technically demanding and cost-intensive. Similarly, bedding and setup solutions are often specific to certain devices and research questions. We present a bedding platform for mice that is compatible with various preclinical imaging modalities (combined PET/MRI, cone beam CT) and irradiation with photons and protons. It consists of a 3D-printed bedding unit (acrylonitrile butadiene styrene, ABS) holding the animal and features an inhalation anesthesia mask, jaw fixation, ear pins, and immobilization for the hind leg. It can be embedded on mounting adaptors for multi-modal imaging and into a transport box (polymethyl methacrylate, PMMA) for experiments outside dedicated animal facilities while maintaining the animal’s hygiene status. A vital support unit provides heating, inhalation anesthesia, and a respiration monitor. We dosimetrically evaluated used materials in order to assess their interaction with incident irradiation. Proof-of-concept multi-modal imaging protocols were used on phantoms and mice. The measured attenuation of the bedding unit for 40/60/80/200 kV X-rays was less than 3%. The measured stopping-power-ratio of ABS was 0.951, the combined water-equivalent thickness of bedding unit and transport box was 4.2 mm for proton energies of 150 MeV and 200 MeV. Proof-of-concept imaging showed no loss of image quality. Imaging data of individual mice from different imaging modalities could be aligned rigidly. The presented bed aims to provide a platform for experiments related to both multi-modal imaging and irradiation, thus offering the possibility for image-guided irradiation which relies on precise imaging and positioning. The usage as a self-contained, stand-alone unit outside dedicated animal facilities represents an advantage over setups designed for specific devices.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

IOP Publishing

Subject

General Nursing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3