Abstract
Abstract
The ability to finely manipulate spatiotemporal patterns displayed in neuronal populations is critical for understanding and influencing brain functions, sleep cycles, and neurological pathologies. However, such control tasks are challenged not only by the immense scale but also by the lack of real-time state measurements of neurons in the population, which deteriorates the control performance. In this paper, we formulate the control of dynamic structures in an ensemble of neuron oscillators as a tracking problem and propose a principled control technique for designing optimal stimuli that produce desired spatiotemporal patterns in a network of interacting neurons without requiring feedback information. We further reveal an interesting presentation of information encoding and processing in a neuron ensemble in terms of its controllability property. The performance of the presented technique in creating complex spatiotemporal spiking patterns is demonstrated on neural populations described by mathematically ideal and biophysical models, including the Kuramoto and Hodgkin-Huxley models, as well as real-time experiments on Wein bridge oscillators.
Funder
Division of Electrical, Communications and Cyber Systems
National Institute of General Medical Sciences
Division of Civil, Mechanical and Manufacturing Innovation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献