Deep-learning online EEG decoding brain-computer interface using error-related potentials recorded with a consumer-grade headset

Author:

Ancau Dorina-Marcela,Ancau Mircea,Ancau MihaiORCID

Abstract

Abstract Objective. Brain-computer interfaces (BCIs) allow subjects with sensorimotor disability to interact with the environment. Non-invasive BCIs relying on EEG signals such as event-related potentials (ERPs) have been established as a reliable compromise between spatio-temporal resolution and patient impact, but limitations due to portability and versatility preclude their broad application. Here we describe a deep-learning augmented error-related potential (ErrP) discriminating BCI using a consumer-grade portable headset EEG, the Emotiv EPOC+. Approach. We recorded and discriminated ErrPs offline and online from 14 subjects during a visual feedback task. Main results: We achieved online discrimination accuracies of up to 81%, comparable to those obtained with professional 32/64-channel EEG devices via deep-learning using either a generative-adversarial network or an intrinsic-mode function augmentation of the training data and minimalistic computing resources. Significance. Our BCI model has the potential of expanding the spectrum of BCIs to more portable, artificial intelligence-enhanced, efficient interfaces accelerating the routine deployment of these devices outside the controlled environment of a scientific laboratory.

Publisher

IOP Publishing

Subject

General Nursing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3