Abstract
Abstract
Many studies in the last decades have correlated mandible bone structure with systemic diseases like osteoporosis. Mandible segmentation, as well as segmentation of other oral structures, is an essential step in studies that correlate oral structures’ conditions with systemic diseases in general. However, manual mandible segmentation is a time-consuming and training-required task that suffers from inter and intra-user variability. Further, the dental panoramic x-ray image (PAN), the most used image in oral studies, contains overlapping of many structures and lacks contrast on structures’ interface. Those facts make both manual and automatic mandible segmentation a challenge. In the present study, we propose a precise and robust set of deep learning-based algorithms for automatic mandible segmentation (AMS) on PAN images. Two datasets were considered. An in-house image dataset with 393 image/segmentation pairs was prepared using image data of 321 image patient data and the corresponding manual segmentation performed by an experienced specialist. Additionally, a publicly available third-party image dataset (TPD) composed of 116 image/segmentation pairs was used to train the models. Four deep learning models were trained using U-Net and HRNet architectures with and without data augmentation. An additional morphological refinement routine was proposed to enhance the models’ prediction. An ensemble model was proposed combining the four best-trained segmentation models. The ensemble model with morphological refinement achieved the highest scores on the test set (98.27%, 97.60%, 97.18%, ACC, DICE, and IoU respectively), with the other models scoring above 95% in all performance metrics on the test set. The present study achieved the highest ranked performance considering all the previously published results on AMS for PAN images. Additionally, those are the most robust results achieved since it was performed over an image set with considerable gender representativeness, a wide age range, a large variety of oral conditions, and images from different imaging scans.
Funder
Coordination of Superior Level Staff Improvement
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Automatic Segmentation of Teeth from Panoramic X-Ray Images Employing Deep Learning Models;2024 4th Interdisciplinary Conference on Electrics and Computer (INTCEC);2024-06-11
2. Tri-Stage Deep Learning Model for Mandibular Condyle Segmentation and Osteoarthritis Identification;2023 International Conference on Network, Multimedia and Information Technology (NMITCON);2023-09-01