Design and analysis of multi-material structures of 3D printed implants of mandible

Author:

K KalaithendralORCID,Karuppudaiyan SORCID,Roy Sandipan

Abstract

Abstract Significant advances in 3D printing technology have paved the way for improvements in the integrity and biological characteristics of polymer implants. The principal objective of this research is the construction of a heterogeneous implant structure using a multi-material approach and 3D printing. Due to their advantageous strength-to-weight ratio, biocompatible polymers have an increasing application in the field of medicine. The osteo-integration process, in which implants bind to the bone over time, can be made more effective by incorporating these materials into implants. In this work, we focused especially on analyzing the strength and integrity of polymer material implants that were created using a combination of different materials, and their stress distribution, and the deformation of these multi-material structures when they were subjected to physiological loading through finite element analysis. The evidence from the frontal bite condition has led to some fascinating conclusions. The variations in stress were observed in homogenous structures, with values ranging from 37.42 MPa for the TPU to 41.07 MPa for the PETG. In contrast, stress distributions in multi-material constructions ranged from 52.31 MPa (in the case of TPU +TPU) to 73.55 MPa (in the case of PLA+ PCL). Similarly, the maximum deformation in homogeneous constructions ranged from 0.81mm (PLA) to 6.85mm (PCL). The deformation of multi-material structures composed of several different materials ranged from 0.68mm (PLA+ PLA) to 5.74 mm (PCL+PCL).These findings provide conclusive evidence that multi-material architectures have a considerable impact on known stress and strain levels. Particularly noteworthy is the fact that the combination of PLA+PLA and PLA+PETG displayed deformation that was equivalent to that of the intact bone model while having lower stress levels. The results of this study provide useful information that can be used to select optimal multi-material combinations that can be 3D printed for implants.

Publisher

IOP Publishing

Subject

General Nursing

Reference32 articles.

1. Polymer materials used in medicine processed by additive techniques;Turek;Polimery/Polymers,2020

2. High-strength, high-toughness SiCp reinforced Mg matrix composites manufactured by semisolid injection molding;Lu;Journal of Materials Research and Technology,2023

3. A critical review on polymeric biomaterials for biomedical applications;Kalirajan;Polymers,2021

4. Mandibular Fractures Treated With Plastic Polymers;Lighterman;The Archives of Surgery,1963

5. Additive manufacturing of multi-material structures;Bandyopadhyay;Materials Science and Engineering R: Reports,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3