Evaluating effectiveness of clustering algorithms in multiple target stereotactic radiosurgery

Author:

Hui Cheukkai BORCID,Chen Josephine,Pourmoghaddas Amir,Mutaf Ela

Abstract

Abstract Objective. Single-isocenter-multiple-target technique for stereotactic radiosurgery (SRS) can reduce treatment duration but risks compromised dose coverage due to potential rotational errors. Clustering targets into two groups can reduce isocenter-target distances, mitigating the impact of rotational uncertainty. However, a comprehensive evaluation of clustering algorithms for SRS is absent. This study addresses this gap by introducing the SRS Target Clustering Framework (Framework), a comprehensive tool that utilizes commonly used clustering algorithms to generate efficient cluster configurations. Approach. The Framework incorporates four distinct optimization objectives based on two key metrics: the isocenter-target distance and the ratio of this distance to the target radius. Agglomerative and weighted agglomerative clustering are employed for minimax and weighted minimax objectives, respectively. K-means and weighted k-means are utilized for sum-of-squares and weighted sum-of-squares objectives. We applied the Framework to 126 SRS plans, comparing results to ground truth solutions obtained through a brute force algorithm. Main results. For the minimax objective, the average maximum isocenter-target distance from agglomerative clustering (4.8 cm) was slightly higher than the ground truth (4.6 cm). Similarly, the weighted agglomerative clustering achieved an average maximum ratio of 15.1 compared to the ground truth of 14.6. Notably, both k-means and weighted k-means clustering showed close agreement (within a precision of 0.1) with the ground truth for average root-mean-square target-isocenter distance and ratio (3.6 cm and 11.1, respectively). Significance. These results demonstrate the Framework’s effectiveness in generating clusters for SRS targets. The proposed approach has the potential to become a valuable tool in SRS treatment planning. Furthermore, this study is the first to investigate clustering algorithms for both minimizing maximum and sum-of-squares uncertainty in SRS.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3