Classification of breast microcalcifications with GaAs photon-counting spectral mammography using an inverse problem approach

Author:

Ghammraoui BahaaORCID,Bader Shahed,Thuering Thomas,Glick Stephen J

Abstract

Abstract The purpose of this study was to investigate the use of a Gallium Arsenide (GaAs) photon-counting spectral mammography system to differentiate between Type I and Type II calcifications. Type I calcifications, consisting of calcium oxalate dihydrate (CO) or weddellite compounds are more often associated with benign lesions in the breast, and Type II calcifications containing hydroxyapatite (HA) are associated with both benign and malignant lesions in the breast. To be able to differentiate between these two calcification types, it is necessary to be able to estimate the full spectrum of the x-ray beam transmitted through the breast. We propose a novel method for estimating the energy-dependent x-ray transmission fraction of a beam using a photon counting detector with a limited number of energy bins. Using the estimated x-ray transmission through microcalcifications, it was observed that calcification type can be accurately estimated with machine learning. The study was carried out on a custom-built laboratory benchtop system using the SANTIS 0804 GaAs detector prototype system from DECTRIS Ltd with two energy thresholds enabled. Four energy thresholds detector was simulated by taking two separate acquisitions in which two energy thresholds were enabled for each acquisition and set at (12 keV, 21 keV) and then (29 keV, 36 keV). Measurements were performed using BR3D (CIRS, Norfolk, VA) breast imaging phantoms mimicking 100% adipose and 100% glandular tissues swirled together in an approximate 50/50 ratio by weight with the addition of in-house-developed synthetic microcalcifications. First, an inverse problem-based approach was used to estimate the full energy x-ray transmission fraction factor using known basis transmission factors from varying thicknesses of aluminum and polymethyl methacrylate (PMMA). Second, the classification of Type I and Type II calcifications was performed using the estimated energy-dependent transmission fraction factors for the pixels containing calcifications. The results were analyzed using receiver operating characteristic (ROC) analysis and demonstrated good discrimination performance with the area under the ROC curve greater than 84%. They indicated that GaAs photon-counting spectral mammography has potential use as a non-invasive method for discrimination between Type I and Type II calcifications. Results from this study suggested that GaAs-based spectral mammography could serve as a non-invasive measure for ruling out malignancy of calcifications found in the breast. Additional studies in more clinically realistic conditions involving breast tissues samples with smaller microcalcification specks should be performed to further explore the feasibility of this approach.

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3