Optimization of GFAG crystal surface treatment for SiPM based TOF PET detector

Author:

Kang Han GyuORCID,Kim Kyoung Jin,Kamada Kei,Yoshikawa Akira,Yoshida Eiji,Nishikido Fumihiko,Yamaya Taiga

Abstract

Abstract Coincidence timing resolution (CTR) is an important parameter in clinical positron emission tomography (PET) scanners to increase the signal-to-noise ratio of PET images by using time-of-flight (TOF) information. Lutetium (Lu) based scintillators are often used for TOF-PET systems. However, the self-radiation of Lu-based scintillators may influence the image quality for ultra-low activity PET imaging. Recently, a gadolinium fine aluminum gallate (Ce:GFAG) scintillation crystal that features a fast decay time (∼55 ns) and no self-radiation was developed. The present study aimed at optimizing the GFAG crystal surface treatment to enhance both CTR and energy resolution (ER). The TOF-PET detector consisted of a GFAG crystal (3.0 × 3.0 × 20 mm3) and a SiPM with an effective area of 3.0 × 3.0 mm2. The timing and energy signals were extracted using a high-frequency SiPM readout circuit and then were digitized using a CAMAC DAQ system. The CTR and ER were evaluated with nine different crystal surface treatments such as partial saw-cut and chemical polishing and the 1-side saw-cut was the best choice among the treatments. The respective CTR and ER of 202 ± 2 ps and 9.5 ± 0.1% were obtained with the 1-side saw-cut; the other 5-side mechanically polished GFAG crystals had respective values which were 18 ps (9.0%) and 1.3% better than those of the all-side mechanically polished GFAG crystal. The chemically polished GFAG crystals also offered enhanced CTR and ER of about 17 ps (8.2%) and 2.1%, respectively, over the mechanically polished GFAG crystals.

Funder

Tohoku University

National Institutes for Quantum and Radiological Science and Technology

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

General Nursing

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of reflector, surface treatment, and length of scintillation crystal on the performance of TOF-DOI PET detector with dual-ended readout;Nuclear Engineering and Technology;2024-07

2. Sub-150 ps CTR Obtained with Hamamatsu S14-Series SiPMs for a 20-mm Long Fast- LGSO Crystal;2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD);2023-11-04

3. Calibration method of crosshair light sharing PET detector with TOF and DOI capabilities;Biomedical Physics & Engineering Express;2023-08-29

4. Coincidence time resolution measurements for dual-ended readout PET detectors;Journal of Instrumentation;2023-07-01

5. Comparative study on gamma-ray detectors for in-situ ocean radiation monitoring system;Applied Radiation and Isotopes;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3