Vision-aided grasp classification: design and evaluation of compact CNN for prosthetic hands

Author:

Sharma Udit,Vasamsetti SrikanthORCID,Chander Sekar Anup,Datta Banibrata

Abstract

Abstract Powered prosthetic hands capable of executing various grasp patterns are highly sought-after solutions for upper limb amputees. A crucial requirement for such prosthetic hands is the accurate identification of the intended grasp pattern and subsequent activation of the prosthetic digits accordingly. Vision-based grasp classification techniques offer improved coordination between amputees and prosthetic hands without physical contact. Deep learning methods, particularly Convolutional Neural Networks (CNNs), are utilized to process visual information for classification. The key challenge lies in developing a model that can effectively generalize across various object shapes and accurately classify grasp classes. To address this, a compact CNN model named GraspCNet is proposed, specifically designed for grasp classification in prosthetic hands. The use of separable convolutions reduces the computational burden, making it potentially suitable for real-time applications on embedded systems. The GraspCNet model is designed to learn and generalize from object shapes, allowing it to effectively classify unseen objects beyond those included in the training dataset. The proposed model was trained and tested using various standard object data sets. A cross-validation strategy has been adopted to perform better in seen and unseen object class scenarios. The average accuracy achieved was 82.22% and 75.48% in the case of seen, and unseen object classes respectively. In computer-based real-time experiments, the GraspCNet model achieved an accuracy of 69%. A comparative analysis with state-of-the-art techniques revealed that the proposed GraspCNet model outperformed most benchmark techniques and demonstrated comparable performance with the DcnnGrasp method. The compact nature of the GraspCNet model suggests its potential for integration with other sensing modalities in prosthetic hands.

Funder

Department of Science and Technology, Government of India

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3