A new optimization algorithm for HDR brachytherapy that improves DVH-based planning: Truncated Conditional Value-at-Risk (TCVaR)

Author:

Wu Victor WORCID,Epelman Marina A,Pasupathy Kalyan S,Sir Mustafa Y,Deufel Christopher L

Abstract

Abstract Purpose: To introduce a new optimization algorithm that improves DVH results and is designed for the type of heterogeneous dose distributions that occur in brachytherapy. Methods: The new optimization algorithm is based on a prior mathematical approach that uses mean doses of the DVH metric tails. The prior mean dose approach is referred to as conditional value-at-risk (CVaR), and unfortunately produces noticeably worse DVH metric results than gradient-based approaches. We have improved upon the CVaR approach, using the so-called Truncated CVaR (TCVaR), by excluding the hottest or coldest voxels in the structure from the calculations of the mean dose of the tail. Our approach applies an iterative sequence of convex approximations to improve the selection of the excluded voxels. Data Envelopment Analysis was used to quantify the sensitivity of TCVaR results to parameter choice and to compare the quality of a library of 256 TCVaR plans created for each of prostate, breast, and cervix treatment sites with commercially-generated plans. Results: In terms of traditional DVH metrics, TCVaR outperformed CVaR and the improvements increased monotonically as more iterations were used to identify and exclude the hottest/coldest voxels from the optimization problem. TCVaR also outperformed the Eclipse-Brachyvision TPS, with an improvement in PTVD95% (for equivalent organ-at-risk doses) of up to 5% (prostate), 3% (breast), and 1% (cervix). Conclusions: A novel optimization algorithm for HDR treatment planning produced plans with superior DVH metrics compared with a prior convex optimization algorithm as well as Eclipse-Brachyvision. The algorithm is computationally efficient and has potential applications as a primary optimization algorithm or quality assurance for existing optimization approaches.

Publisher

IOP Publishing

Subject

General Nursing

Reference41 articles.

1. Some models for estimating technical and scale inefficiencies in data envelopment analysis;Banker;Manage. Sci.,1984

2. A hybrid simulated annealing linear programming approach for treatment planning in HDR brachytherapy with dose volume constraints;Beliën,2009

3. Measuring the efficiency of decision making units;Charnes;Eur. J. Oper. Res.,1978

4. IMRT treatment planning for prostate cancer using prioritized prescription optimization and mean-tail-dose functions;Clark;Linear Algebr. Appl.,2008

5. Dose optimization in high-dose-rate brachytherapy: A literature review of quantitative models from 1990 to 2010;De Boeck;Operations Research for Health Care,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3