KRASFormer: a fully vision transformer-based framework for predicting KRAS gene mutations in histopathological images of colorectal cancer

Author:

Singh Vivek KumarORCID,Makhlouf Yasmine,Sarker Md Mostafa Kamal,Craig Stephanie,Baena Juvenal,Greene Christine,Mason Lee,James Jacqueline A,Salto-Tellez Manuel,O’Reilly Paul,Maxwell PerryORCID

Abstract

Abstract Detecting the Kirsten Rat Sarcoma Virus (KRAS) gene mutation is significant for colorectal cancer (CRC) patients. The KRAS gene encodes a protein involved in the epidermal growth factor receptor (EGFR) signaling pathway, and mutations in this gene can negatively impact the use of monoclonal antibodies in anti-EGFR therapy and affect treatment decisions. Currently, commonly used methods like next-generation sequencing (NGS) identify KRAS mutations but are expensive, time-consuming, and may not be suitable for every cancer patient sample. To address these challenges, we have developed KRASFormer, a novel framework that predicts KRAS gene mutations from Haematoxylin and Eosin (H & E) stained WSIs that are widely available for most CRC patients. KRASFormer consists of two stages: the first stage filters out non-tumor regions and selects only tumour cells using a quality screening mechanism, and the second stage predicts the KRAS gene either wildtype’ or mutant’ using a Vision Transformer-based XCiT method. The XCiT employs cross-covariance attention to capture clinically meaningful long-range representations of textural patterns in tumour tissue and KRAS mutant cells. We evaluated the performance of the first stage using an independent CRC-5000 dataset, and the second stage included both The Cancer Genome Atlas colon and rectal cancer (TCGA-CRC-DX) and in-house cohorts. The results of our experiments showed that the XCiT outperformed existing state-of-the-art methods, achieving AUCs for ROC curves of 0.691 and 0.653 on TCGA-CRC-DX and in-house datasets, respectively. Our findings emphasize three key consequences: the potential of using H & E-stained tissue slide images for predicting KRAS gene mutations as a cost-effective and time-efficient means for guiding treatment choice with CRC patients; the increase in performance metrics of a Transformer-based model; and the value of the collaboration between pathologists and data scientists in deriving a morphologically meaningful model.

Funder

UK Research and Innovation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3