Investigating the detection of breast cancer with deep transfer learning using ResNet18 and ResNet34

Author:

Subaar ChristianaORCID,Addai Fosberg Tweneboah,Addison Eric Clement KoteiORCID,Christos Olivia,Adom Joseph,Owusu-Mensah Martin,Appiah-Agyei Nelson,Abbey Shadrack

Abstract

Abstract A lot of underdeveloped nations particularly in Africa struggle with cancer-related, deadly diseases. Particularly in women, the incidence of breast cancer is rising daily because of ignorance and delayed diagnosis. Only by correctly identifying and diagnosing cancer in its very early stages of development can be effectively treated. The classification of cancer can be accelerated and automated with the aid of computer-aided diagnosis and medical image analysis techniques. This research provides the use of transfer learning from a Residual Network 18 (ResNet18) and Residual Network 34 (ResNet34) architectures to detect breast cancer. The study examined how breast cancer can be identified in breast mammography pictures using transfer learning from ResNet18 and ResNet34, and developed a demo app for radiologists using the trained models with the best validation accuracy. 1, 200 datasets of breast x-ray mammography images from the National Radiological Society’s (NRS) archives were employed in the study. The dataset was categorised as implant cancer negative, implant cancer positive, cancer negative and cancer positive in order to increase the consistency of x-ray mammography images classification and produce better features. For the multi-class classification of the images, the study gave an average accuracy for binary classification of benign or malignant cancer cases of 86.7% validation accuracy for ResNet34 and 92% validation accuracy for ResNet18. A prototype web application showcasing ResNet18 performance has been created. The acquired results show how transfer learning can improve the accuracy of breast cancer detection, providing invaluable assistance to medical professionals, particularly in an African scenario.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3