Dictionary selection for compressed sensing of EEG signals using sparse binary matrix and spatiotemporal sparse Bayesian learning

Author:

Dey Manika Rani,Shiraz ArsamORCID,Sharif Saeed,Lota JaswinderORCID,Demosthenous AndreasORCID

Abstract

Abstract Online monitoring of electroencephalogram (EEG) signals is challenging due to the high volume of data and power requirements. Compressed sensing (CS) may be employed to address these issues. Compressed sensing using a sparse binary matrix, owing to its low power features, and reconstruction/decompression using spatiotemporal sparse Bayesian learning have been shown to constitute a robust framework for fast, energy efficient and accurate multichannel bio-signal monitoring. EEG signal, however, does not show a strong temporal correlation. Therefore, the use of sparsifying dictionaries has been proposed to exploit the sparsity in a transformed domain instead. Assuming sparsification adds values, a challenge, therefore, in employing this CS framework for the EEG signal, is to identify the suitable dictionary. Using real multichannel EEG data from 15 subjects, in this paper, we systematically evaluate the performance of the framework when using various wavelet bases while considering their key attributes namely number of vanishing moments and coherence with sensing matrix. We identified Beylkin as the wavelet dictionary leading to the best performance. Using the same dataset, we then compared the performance of Beylkin with the discrete cosine basis, often used in the literature, and the alternative of not using a sparsifying dictionary. We further demonstrate that using dictionaries (Beylkin and Discrete Cosine Transform (DCT)) may improve performance tangibly only for a high compression ratio (CR) of 80% and with smaller block sizes, as compared to using no dictionaries.

Publisher

IOP Publishing

Subject

General Nursing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3