Extracting features from wrist vein images using fractional fourier transform for person verification

Author:

Massihi NegarORCID,Rashidi SaeidORCID

Abstract

Abstract One of the major concerns is the security and protection of individuals’ privacy in society. Biometric methods have been developed in recent years and they are widely used in many places and devices to protect information and assets. Wrist veins are inside the body and their pattern is unique for each person. In this paper, the PUT wrist vein dataset is used that comprises of palm and wrist vein images and each section has 1200 images of right and left hand. Wrist vein images are analyzed in the time-frequency domain by applying Fractional Fourier transform (FrFT), and the extracted features include phase, magnitude, real, and imaginary parts of FrFT coefficients. Since the number of features is very large by implementing FrFT, receiver operating characteristic (ROC) is applied for feature scoring and the best features are selected by this tool. Support Vector Machine (SVM) is used to classify real and impostor samples. The results of various features extracted by FrFT are compared, and according to the obtained results, we deduced that the phase feature is stronger than other features for person authentication based on wrist vein images, and this feature achieved 100% accuracy.

Publisher

IOP Publishing

Subject

General Nursing

Reference39 articles.

1. Hand biometrics : an overview;Bharathi;Int. J. Autom. Identif. Technol.,2011

2. Human vein pattern segmentation from low quality images - A comparison of methods;Kabaciński,2010

3. Dorsal hand vein authentication system : a review;Sontakke;Int. J. Sci. Res. Eng. Technol.,2017

4. A review on vein biometric recognition using geometric pattern matching techniques;Agarwal,2014

5. Hand vein authentication using biometric graph matching;Lajevardi;IET Biometrics,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3