On-chip mixing of cancer cells and drug using LED enabled 2D opto-wetting droplet platforms

Author:

Thomas TonyORCID,Govindharaj Mano,Unni Harikrishnan NarayananORCID,Kumari Neema,Rath Subha NarayanORCID

Abstract

Abstract Droplets of microliter size serve as miniaturized reaction chambers for practical lab on a chip (LoC) applications. The transportation and coalescence of droplets are indispensable for realizing microfluidic mixing. Light can be used as an effective tool for droplet manipulation. We report a novel platform for LED-based transport and mixing of cell-encapsulated microdroplets for evaluating dose response of cancer drugs. Microcontroller enabled LEDs (Light-emitting diodes) were used to actuate droplet movement on Azobenzene coated planar silicon substrates. Droplet transport was initiated by the spatial gradient in solid-liquid interfacial tension developed through LED triggered photoisomerization of Azobenzene substrate. Detailed UV-Visible characterization of Azobenzene molecule was performed for different LED light intensities and wavelengths. A complete standalone opto-wetting toolbox was developed by integrating various components such as a microcontroller, UV LED (385 nm), blue LED (465 nm), and Azobenzene coated photoresponsive substrate. 2D transport of DI water droplets (10–30 μl) along simple trajectories was demonstrated using this device. Subsequently, the proposed opto-wetting platform was used for performing drug evaluation through on-chip mixing of droplets containing cancer cells (A549—Lung cancer cells) and cancer drug (paclitaxel). Separate cell viability analysis was performed using MTT assays, where the cytocompatibility of Azobenzene and UV light (385 nm) on A549 cells were studied. The dosage response of paclitaxel drug was studied using both MTT (3-(4,5-Dimethylthiazolyl-2)−2,5-diphenyltetrazolium bromide) and live-dead cell assays. The results obtained indicate the potential use of our device as a cost-effective, reliable opto-wetting microfluidic platform for drug screening experiments.

Publisher

IOP Publishing

Subject

General Nursing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3