Investigating the number of radiation fields in intensity-modulated radiotherapy plans of optic nerve sheath meningioma patients using dose gradient index

Author:

Mazloomi FahimehORCID,Abedi IrajORCID,Shanei Ahmad,Dalvand Fatemeh,Amouheidari Alireza

Abstract

Abstract Purpose: In optic nerve radiotherapy, vital organs are very close to the target volume, they are highly sensitive to radiation and have low dose tolerance. In this regard, evaluating dose fall-off steepness around the target volume is required to assess various intensity-modulated radiation therapy (IMRT) plans in the treatment of the optic nerve sheath meningioma (ONSM) patients. Materials and Methods: Thirteen ONSM patients were analyzed with three IMRT techniques, including three (IMRT-3F), five (IMRT-5F), and seven fields (IMRT-7F). These plans were studied using Dmean, Dmax, D2%, D98%, V100%, uniformity index (UI), homogeneity index (HI), conformity index (CI), and specifically the dose gradient indices (DGIs). Results: The values of Dmax and Dmean for IMRT-3F, IMRT-5F and IMRT-7F were (5637.42 ± 57.08, 5322.84 ± 83.86), (5670.51 ± 67.87, 5383.00 ± 58.45), and (5692.99 ± 31.65, 5405.72 ± 51.73), respectively, which were increased with increment in the number of IMRT fields from 3 to 7. The UI and HI indices were significantly different between IMRT-3F and IMRT-7F (p = 0.010 and p = 0.005, respectively), and CI was close to the ideal value (0.99 ± 0.01) in IMRT-7F. The significant findings of the dose gradient indices represented smaller values in IMRT-7F, which led to a faster dose fall-off, particularly at the 70%-85% isodose levels around the target. Conclusion: Increasing the number of radiation fields in IMRT treatment plans of ONSM patients had a considerable difference in both the dosimetric parameters of the target volume and at-risk organs, as well as the dose gradient indices. Overall, IMRT-7F could be considered as a preferred technique in the treatment of this meningioma.

Funder

Isfahan University of Medical Sciences

Publisher

IOP Publishing

Subject

General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3