The ultra high sensitivity blood counter: a compact, MRI-compatible, radioactivity counter for pharmacokinetic studies in μl volumes

Author:

Convert LaurenceORCID,Sarrhini OtmanORCID,Paillé Maxime,Salem Nicolas,Charette Paul GORCID,Lecomte RogerORCID

Abstract

Abstract Quantification of physiological parameters in preclinical pharmacokinetic studies based on nuclear imaging requires the monitoring of arterial radioactivity over time, known as the arterial input function (AIF). Continuous derivation of the AIF in rodent models is very challenging because of the limited blood volume available for sampling. To address this challenge, an Ultra High Sensitivity Blood Counter (UHS-BC) was developed. The device detects beta particles in real-time using silicon photodiodes, custom low-noise electronics, and 3D-printed plastic cartridges to hold standard catheters. Two prototypes were built and characterized in two facilities. Sensitivities up to 39% for 18F and 58% for 11C-based positron emission tomography (PET) tracers were demonstrated. 99mTc and 125I based Single Photon Emission Computed Tomography (SPECT) tracers were detected with greater than 3% and 10% sensitivity, respectively, opening new applications in nuclear imaging and fundamental biology research. Measured energy spectra show all relevant peaks down to a minimum detectable energy of 20 keV. The UHS-BC was shown to be highly reliable, robust towards parasitic background radiation and electromagnetic interference in the PET or MRI environment. The UHS-BC provides reproducible results under various experimental conditions and was demonstrated to be stable over days of continuous operation. Animal experiments showed that the UHS-BC performs accurate AIF measurements using low detection volumes suitable for small animal models in PET, SPECT and PET/MRI investigations. This tool will help to reduce the time and number of animals required for pharmacokinetic studies, thus increasing the throughput of new drug development.

Funder

Natural Sciences and Engineering Research Council of Canada;

Fonds de Recherche du Québec - Santé

Biogen

Publisher

IOP Publishing

Subject

General Nursing

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3